87 research outputs found

    Invasive and Non-invasive Stimulation of the Obese Human Brain

    Get PDF
    Accumulating evidence suggests that non-invasive and invasive brain stimulation may reduce food craving and calorie consumption rendering these techniques potential treatment options for obesity. Non-invasive transcranial direct current stimulation (tDCS) or repetitive transcranial magnet stimulation (rTMS) are used to modulate activity in superficially located executive control regions, such as the dorsolateral prefrontal cortex (DLPFC). Modulation of the DLPFC’s activity may alter executive functioning and food reward processing in interconnected dopamine-rich regions such as the striatum or orbitofrontal cortex. Modulation of reward processing can also be achieved by invasive deep brain stimulation (DBS) targeting the nucleus accumbens. Another target for DBS is the lateral hypothalamic area potentially leading to improved energy expenditure. To date, available evidence is, however, restricted to few exceptional cases of morbid obesity. The vagal nerve plays a crucial role in signaling the homeostatic demand to the brain. Invasive or non-invasive vagal nerve stimulation (VNS) is thus assumed to reduce appetite, rendering VNS another possible treatment option for obesity. Based on currently available evidence, the U.S. Food and Drug Administration recently approved VNS for the treatment of obesity. This review summarizes scientific evidence regarding these techniques’ efficacy in modulating food craving and calorie intake. It is time for large controlled clinical trials that are necessary to translate currently available research discoveries into patient care

    The NMDA antagonist memantine affects training induced motor cortex plasticity – a study using transcranial magnetic stimulation [ISRCTN65784760]

    Get PDF
    BACKGROUND: Training of a repetitive synchronised movement of two limb muscles leads to short-term plastic changes in the primary motor cortex, which can be assessed by transcranial magnetic stimulation (TMS) mapping. We used this paradigm to study the effect of memantine, a NDMA antagonist, on short-term motor cortex plasticity in 20 healthy human subjects, and we were especially interested in possible differential effects of different treatment regimens. In a randomised double-blinded cross over study design we therefore administered placebo or memantine either as a single dosage or as an ascending dosage over 8 days. Before and after one hour of motor training, which consisted of a repetitive co-contraction of the abductor pollicis brevis (APB) and the deltoid muscle, we assessed the motor output map of the APB muscle by TMS under the different conditions. RESULTS: We found a significant medial shift of the APB motor output map after training in the placebo condition, indicating training-induced short-term plastic changes in the motor cortex. A single dosage of memantine had no significant effect on this training-induced plasticity, whereas memantine administered in an ascending dosage over 8 days was able to block the cortical effect of the motor training. The memantine serum levels after 8 days were markedly higher than the serum levels after a single dosage of memantine, but there was no individual correlation between the shift of the motor output map and the memantine serum level. Besides, repeated administration of a low memantine dosage also led to an effective blockade of training-induced cortical plasticity in spite of serum levels comparable to those reached after single dose administration, suggesting that the repeated administration was more important for the blocking effect than the memantine serum levels. CONCLUSION: We conclude that the NMDA-antagonist memantine is able to block training-induced motor cortex plasticity when administered over 8 days, but not after administration of a single dose. This differential effect might be mainly due to the prolonged action of memantine at the NMDA receptor. These findings must be considered if clinical studies are designed, which aim at evaluating the potency of memantine to prevent "maladaptive" plasticity, e.g. after limb amputation

    Non-invasive Prefrontal/Frontal Brain Stimulation Is Not Effective in Modulating Food Reappraisal Abilities or Calorie Consumption in Obese Females

    Get PDF
    Background/Objectives: Previous studies suggest that non-invasive transcranial direct current stimulation (tDCS) applied to the prefrontal cortex modulates food choices and calorie intake in obese humans.Participants/Methods: In the present fully randomized, placebo-controlled, within-subject and double-blinded study, we applied single sessions of anodal, cathodal, and sham tDCS to the left dorsolateral prefrontal cortex (DLPFC) and contralateral frontal operculum in 25 hungry obese women and investigated possible influences on food reappraisal abilities as well as calorie intake. We hypothesized that tDCS, (i) improves the ability to regulate the desire for visually presented foods and, (ii) reduces their consumption.Results: We could not confirm an effect of anodal or cathodal tDCS, neither on the ability to modulate the desire for visually presented foods, nor on calorie consumption.Conclusions: The present findings do not support the notion of prefrontal/frontal tDCS as a promising treatment option for obesity

    Modulation of prefrontal couplings by prior belief-related responses in ventromedial prefrontal cortex

    Get PDF
    Humans and other animals can maintain constant payoffs in an uncertain environment by steadily re-evaluating and flexibly adjusting current strategy, which largely depends on the interactions between the prefrontal cortex (PFC) and mediodorsal thalamus (MD). While the ventromedial PFC (vmPFC) represents the level of uncertainty (i.e., prior belief about external states), it remains unclear how the brain recruits the PFC-MD network to re-evaluate decision strategy based on the uncertainty. Here, we leverage non-linear dynamic causal modeling on fMRI data to test how prior belief-dependent activity in vmPFC gates the information flow in the PFC-MD network when individuals switch their decision strategy. We show that the prior belief-related responses in vmPFC had a modulatory influence on the connections from dorsolateral PFC (dlPFC) to both, lateral orbitofrontal (lOFC) and MD. Bayesian parameter averaging revealed that only the connection from the dlPFC to lOFC surpassed the significant threshold, which indicates that the weaker the prior belief, the less was the inhibitory influence of the vmPFC on the strength of effective connections from dlPFC to lOFC. These findings suggest that the vmPFC acts as a gatekeeper for the recruitment of processing resources to re-evaluate the decision strategy in situations of high uncertainty

    Differential cerebral response to somatosensory stimulation of an acupuncture point vs. two non-acupuncture points measured with EEG and fMRI

    Get PDF
    Acupuncture can be regarded as a complex somatosensory stimulation. Here, we evaluate whether the point locations chosen for a somatosensory stimulation with acupuncture needles differently change the brain activity in healthy volunteers. We used EEG, event-related fMRI, and resting-state functional connectivity fMRI to assess neural responses to standardized needle stimulation of the acupuncture point ST36 (lower leg) and two control point locations (CP1 same dermatome, CP2 different dermatome). Cerebral responses were expected to differ for stimulation in two different dermatomes (CP2 different from ST36 and CP1), or stimulation at the acupuncture point vs. the control points. For EEG, mu rhythm power increased for ST36 compared to CP1 or CP2, but not when comparing the two control points. The fMRI analysis found more pronounced insula and S2 (secondary somatosensory cortex) activation, as well as precuneus deactivation during ST36 stimulation. The S2 seed-based functional connectivity analysis revealed increased connectivity to right precuneus for both comparisons, ST36 vs. CP1 and ST36 vs. CP2, however in different regions. Our results suggest that stimulation at acupuncture points may modulate somatosensory and saliency processing regions more readily than stimulation at non-acupuncture point locations. Also, our findings suggest potential modulation of pain perception due to acupuncture stimulation

    State-dependencies of learning across brain scales

    Get PDF
    Learning is a complex brain function operating on different time scales, from milliseconds to years, which induces enduring changes in brain dynamics. The brain also undergoes continuous “spontaneous” shifts in states, which, amongst others, are characterized by rhythmic activity of various frequencies. Besides the most obvious distinct modes of waking and sleep, wake-associated brain states comprise modulations of vigilance and attention. Recent findings show that certain brain states, particularly during sleep, are essential for learning and memory consolidation. Oscillatory activity plays a crucial role on several spatial scales, for example in plasticity at a synaptic level or in communication across brain areas. However, the underlying mechanisms and computational rules linking brain states and rhythms to learning, though relevant for our understanding of brain function and therapeutic approaches in brain disease, have not yet been elucidated. Here we review known mechanisms of how brain states mediate and modulate learning by their characteristic rhythmic signatures. To understand the critical interplay between brain states, brain rhythms, and learning processes, a wide range of experimental and theoretical work in animal models and human subjects from the single synapse to the large-scale cortical level needs to be integrated. By discussing results from experiments and theoretical approaches, we illuminate new avenues for utilizing neuronal learning mechanisms in developing tools and therapies, e.g., for stroke patients and to devise memory enhancement strategies for the elderly

    The perception of touch and the ventral somatosensory pathway

    Get PDF
    Preusser et al. use MRI-based lesion-symptom mapping to confirm the causal role of a ventral pathway in the perception of touch. This pathway originates downstream of the postcentral gyrus in the parietal operculum, passes the insula and the putamen, before terminating in white matter projections extending to inferior lateral prefrontal corte

    Eigenvector Centrality Mapping for Analyzing Connectivity Patterns in fMRI Data of the Human Brain

    Get PDF
    Functional magnetic resonance data acquired in a task-absent condition (“resting state”) require new data analysis techniques that do not depend on an activation model. In this work, we introduce an alternative assumption- and parameter-free method based on a particular form of node centrality called eigenvector centrality. Eigenvector centrality attributes a value to each voxel in the brain such that a voxel receives a large value if it is strongly correlated with many other nodes that are themselves central within the network. Google's PageRank algorithm is a variant of eigenvector centrality. Thus far, other centrality measures - in particular “betweenness centrality” - have been applied to fMRI data using a pre-selected set of nodes consisting of several hundred elements. Eigenvector centrality is computationally much more efficient than betweenness centrality and does not require thresholding of similarity values so that it can be applied to thousands of voxels in a region of interest covering the entire cerebrum which would have been infeasible using betweenness centrality. Eigenvector centrality can be used on a variety of different similarity metrics. Here, we present applications based on linear correlations and on spectral coherences between fMRI times series. This latter approach allows us to draw conclusions of connectivity patterns in different spectral bands. We apply this method to fMRI data in task-absent conditions where subjects were in states of hunger or satiety. We show that eigenvector centrality is modulated by the state that the subjects were in. Our analyses demonstrate that eigenvector centrality is a computationally efficient tool for capturing intrinsic neural architecture on a voxel-wise level

    Intermittent compared to continuous real-time fMRI neurofeedback boosts control over amygdala activation

    Get PDF
    Real-time fMRI neurofeedback is a feasible tool to learn the volitional regulation of brain activity. So far, most studies provide continuous feedback information that is presented upon every volume acquisition. Although this maximizes the temporal resolution of feedback information, it may be accompanied by some disadvantages. Participants can be distracted from the regulation task due to (1) the intrinsic delay of the hemodynamic response and associated feedback and (2) limited cognitive resources available to simultaneously evaluate feedback information and stay engaged with the task. Here, we systematically investigate differences between groups presented with different variants of feedback (continuous vs. intermittent) and a control group receiving no feedback on their ability to regulate amygdala activity using positive memories and feelings. In contrast to the feedback groups, no learning effect was observed in the group without any feedback presentation. The group receiving intermittent feedback exhibited better amygdala regulation performance when compared with the group receiving continuous feedback. Behavioural measurements show that these effects were reflected in differences in task engagement. Overall, we not only demonstrate that the presentation of feedback is a prerequisite to learn volitional control of amygdala activity but also that intermittent feedback is superior to continuous feedback presentation
    corecore